LANDSCAPE HETEROGENEITY INFLUENCES DIVERSITY OF SHRUBS AND TREE SPECIES IN TEMPERATE MIXEDWOOD FORESTS

Rudiger Markgraf, Frédérik Doyon, Daniel Kneeshaw and Marc Mazerolle
Plant diversity

- More than **120 hypotheses** identified by Palmer (1994)

- A hierarchical top down approach:
 - Climate regionally
 - **Environmental heterogeneity at intermediate scales**
 - Competition at local scales

Environmental heterogeneity

a. Species-Area Curve

Species Diversity vs. Area (ha)

(Rosenzweig 1991)
Environmental heterogeneity

b. Area & Habitat Diversity

Number of Habitats vs Area (ha)

(Rosenzweig 1991)
Environmental heterogeneity

Species Diversity

(c. Habitat Diversity Controls Species Diversity

Species Diversity vs. Number of habitats

(Rosenzweig 1991)
Environmental heterogeneity

- Heterogeneity correlates with richness

- Do not confuse with fragmentation studies
 - Non contiguous landscapes

- **Does this mean we should manage for heterogeneity?**
Introduction

Methods

Results

Conclusion

Species diversity will be greatest in heterogeneous landscapes having experienced multiple intermediate disturbances
Local diversity - Biomass diversity relationship

- 30 years of debate
- Hump-shaped relationship

(Adler et al. 2011)

Graph: Complementarity? vs. Biomass

(Grime 1979)
Biomass diversity

Species Diversity

Live Biomass

(Adler et al. 2011)
Methods

Index = variability
→ stand density
→ stand height
→ stand patch size
window size $= 1\text{km}^2$
Methods

12 landscapes (1 km2)
223 gap and forest sites
1101 microquadrats

All on mesic soils
2 disturbances histories
Partial harvest
Partial harvest + SBW outbreak
α Diversity

<table>
<thead>
<tr>
<th></th>
<th>Shannon</th>
<th>Richness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrubs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Het > Mod P(f) = 0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Het > Hom P(f) = 0.01</td>
<td></td>
</tr>
<tr>
<td>Tree seedlings</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hom > Het P(f) = 0.02</td>
<td></td>
</tr>
<tr>
<td>Tree saplings</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mod > Het P(f) = 0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mod > Het P(f) = 0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hom > Het P(f) = 0.05</td>
<td></td>
</tr>
</tbody>
</table>

Hypothesis rejected for tree α-diversity

Statistics - Two factor ANOVA mixed models with gap or forest site identifier as the random factor
Shrubs – β and γ Diversity

Number of shrub species

Number of microquadrats (5 m²)

- **Homogenous**
- **Moderate**
- **Heterogeneous**
Shrubs – β and γ Diversity

Hypothesis confirmed for β and γ Diversity
Trees – β and γ Diversity

Number of tree species (seedlings)

At small scales homogenous has greater α-diversity

Number of microquadrats (5 m²)
Trees – β and γ Diversity

Hypothesis confirmed for β and γ Diversity
Tree & shrub density vs. landscape heterogeneity

- Shrubs
- Trees

Heterogeneous
Moderate
Homogeneous
Diversity Biomass Relationship

A MAINLY positive relationship

Some sites with lower diversity

$R^2 = 0.2564$
Could the shrub response to heterogeneity simply be due to greater density? And not biological processes?
Rarefaction

Number of shrub species

Sample size

- Heterogeneous
- Moderate
- Homogeneous
Introduction

- Number of tree species (seedlings)

Methods

- Sample size

Results

- Homogenous
- Heterogeneous
- Moderate

Conclusion
Conclusion

1. Hypothesis rejected for tree seedlings
 - α-diversity in *Het* landscapes

2. Increased heterogeneity from multiple intermediate disturbances (SBW, tree harvest) favor the density and diversity of shrubs, and limits the density and diversity of trees

 shrub diversity in *Het* landscapes result of greater shrub density in *Het* landscapes? NO! Rarefaction results suggest a biotic interaction
3. Management implications heterogeneous landscapes are not necessarily more diverse for trees

SPB + Cut + Natural disturbance = TOO MUCH!

3.5 Precautions must be made in forest management to avoid crossing a threshold in landscape heterogeneity. Comprehension of previous disturbances must therefore be taken into account for future planning.